

Air Force Research Laboratory

Integrity ★ Service ★ Excellence

ADAPT

CCMC 24 April 2018

Carl J. Henney¹, Kathleen Shurkin¹, C. Nick Arge², & David T. MacKenzie^{1,3}

- 1. AFRL/Space Vehicles Directorate, Kirtland AFB, NM
- NASA Goddard Space Flight Center, Greenbelt, MD
 AER, Inc., Lexington, MA

Overview

The ADAPT (<u>Air Force Data Assimilative Photospheric Flux Transport</u>)
 model generates global solar magnetic maps
 Solar Wind Modeling

Original Goal

ADAPT driven 4-day Solar Wind Forecast

Credit: WSA-Enlil

ADAPT 3-day F10.7 Forecast

- ADAPT project started ~10 years ago:
 - Maps originally developed to drive solar wind forecasts
 - Now, maps also drive solar F10.7 and EUV forecasts
 - Irradiance modeling w/ SIFT (Solar Indices Forecasting Tool)
 - SIFT project started ~7 years ago

ADAPT Model:

development history & status

Overview | ADAPT | AR Modeling | Summary

Start: 2007 via Air Force Office of Scientific Research (AFOSR) funding

Original Goal: combine NSO's Worden & Harvey magnetic flux transport with Los Alamos National Laboratory Kalman Filter (KF) data assimilation code:

- flux transport code in IDL, originally designed for daily input only
- data assimilation code in fortran90, no spatial constraints on KF

Coordination: ~1.5 active programmers at any given time

Now: the core of ADAPT is written in C, with the following libraries:

- CFITSIO (input/output in FITS, Flexible Image Transport System)
- **GFortran** [may remove in 2018]
- GSL / GSL-Devel (GNU Scientific Library)
- MySQL [may remove in 2018]
- Open MPI
- Python 3:
 - AstroPy, Matplotlib, NumPy, PyEphem, PyMySQL, SciPy, SunPy
- XML

ADAPT Model:

flux transport & data assimilation

Overview | ADAPT | AR Modeling | Summary

- ADAPT Magnetic Flux Transport:
 - accounts for known surface flows across the surface of the sun:
 - Differential rotation
 - Meridional poleward flows
 - Supergranulation diffusion

to align old data with observations

Credit: Zhao et al. 2014

ADAPT Data Assimilation:

assimilates observations using the ensemble least-squares estimation method, utilizing the variances of the model forecast ensemble and observed data.

Movie of 12 ADAPT model realizations representing the transport uncertainty for given instant in time

ADAPT Model Input:

magnetogram sources

Overview | ADAPT | AR Modeling | Summary

Kitt Peak Vacuum Telescope

KPVT: 1992 (soon 1977) – 2003

[24 hr, single site, 868.8 nm]

NISP/VSM: 2003 - present

[24 hr, single site, 630.2 nm]

NISP/GONG: 2006 - present

[10 min, 6 sites, 676.8 nm]

SDO/HMI: 2010 - present

[12 min, Sat-GEO, 617.3 nm]

NSO Integrated Synoptic Program: Vector SpectroMagnetograph

NSO Integrated Synoptic Program: Global Oscillation Network Group

Helioseismic and Magnetic Imager (on the Solar Dynamics Observatory)

ADAPT Model:

Modeling Framework

Overview | ADAPT | AR Modeling | Summary

Future input: *Solar Orbiter-PHI, plus L1 & L5/L4 magnetographs*

Reverse Active Region Modeling:

far-side "forensics"

Overview | ADAPT | AR Modeling | Summary

Reconstruction of AR evolution:

- 1) Start with given AR on the east-limb
- 2) Estimate emergence from STEREO
- Use mean evolution profile to reverse AR

1 HMI Vector 10 July 2010 @ 1059 UT

AR11087

(2

STEREO* EUVI (30.4 nm)

^{*} Note: only STEREO-A data is available after Oct 1, 2014, however, STEREO-B may become available at a later date.

Reverse AR Evolution Example:

Overview | ADAPT | AR Modeling | Summary

ADAPT with AR11087 (seed data from 10 July 2010; emergence ~6/25):

Seed image data

AR11089

(07/20/2010; 8d)

AR11113

(10/15/2010; 17d)

Reverse Active Region "Yearbook":

May 1, 2010 to March 5, 2011

Overview | ADAPT | AR Modeling | Summary

AR11135

(12/14/2010; 10d)

ADAPT HMI Vector with RARs:

the movie (May 1, 2010 to Sep 15, 2010)

Overview | ADAPT | **AR Modeling** | Summary

4. modeled far-side AR flux, AR11108, emerges on 9/7

ADAPT global map movie (realization 1 @ 24 hour cadence)

1. Starts with returning flux, then near-side AR before modeled far-side AR11087 emerges 6/25

AGMARA Tool:

user driven AR modeling

Overview | ADAPT | AR Modeling | Summary

Preliminary screenshot of the AGMARA* Tool:

AFRL

Summary:

ADAPT maps online

Overview | ADAPT | AR Modeling | **Summary**

Two types of ADAPT/GONG maps are generated daily at the National Solar Observatory (NSO) at: ftp://gong2.nso.edu/adapt/maps/gong/

+90

Carrington Frame

Sub-directory: YYYY/.

Prefix: "adapt403"

Cadence: 2 hours

Realizations: 12*

Central Meridian Frame

Sub-directory: YYYY/.

Prefix: "adapt413"

Cadence: 2 hours

Realizations: 12*

CM

^{*} Currently, realizations only differ by supergranulation flow pattern.

Links & References

- Near real-time ADAPT maps at: ftp://gong2.nso.edu/adapt/maps
- And, $F_{10.7}$, Mg II, and SSN forecasts at: ftp://gong2.nso.edu/adapt/sift
- Related References:

Forecasting Solar Extreme and Far Ultraviolet Irradiance

Henney, Hock, Schooley, Toussaint, White, Arge 2015,
Space Weather, 13, 141-153
& Space Weather Quarterly, 12, 19-31

Data Assimilation in the ADAPT Photospheric Flux Transport Model

Hickmann, Godinez, Henney, Arge 2015, Solar Physics, 209, 1105-1118

<u>Acknowledgements</u>

ADAPT is supported by the AFRL, AFOSR, and NASA, and this work utilizes data produced collaboratively between AFRL/ADAPT and NSO/NISP.

